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the stereochemistry of the phenol oxidation reactions are in 
progress. 
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Organoplatinum Complexes Related to the 
Cyclodimerization of 1,3-Dienes. Reactions of 
2,3-Dimethylbuta-l,3-diene and Buta-l,3-diene with 
Bis(cycloocta-l,5-diene)platinum or 
Bis(ethylene)trimethylphosphineplatinum 

Sir: 

The discovery and development of the nickel(O) catalyzed 
cyclodimerization and cyclotrimerization reactions of 1,3-
dienes rank as one of the major achievements of organometallic 
chemistry.1 Considerable progress has been made towards 

understanding the mechanisms of these reactions; however, 
there are certain aspects which still require clarification. The 
recent development of syntheses2 of "ligand free"3 zerovalent 
compounds of platinum now allows a study of reactions of these 
species with 1,3-dienes. Herein we report studies with bis(cy-
cloocta-1,5-diene)platinum.4 

Reaction (room temperature, 1 h) of an excess of 2,3-di-
methylbuta-1,3-diene with bis(cycloocta-l,5-diene)platinum 
afforded (84% yield) the white crystalline complex I,5 mp 95° 
dec [13C NMR resonances (C6D6,

 1H decoupled, measured 
downfield from Me4Si) at 20.1 ppm, C(3) (7ptc(3) = 111-4 
Hz); 40.7, C(I) (7p,C(i) = 787.4 Hz); and 136.4, C(2) (/PtC(2) 
= OHz); resonances due to coordinated CgHi2 occur at 29.6 
and 96.8 ppm (JPtc = 51.9 Hz)]. Treatment of I with tert-

^ , ^V 
(I, L, - 1,5-C8H12) (ln> L> _ 1?5.c H } 

(II, L = r-BuNC) ( IVj L"_ ( .BuNC)-

butylisocyanide led to the displacement of cycloocta-1,5-diene 
and the formation of II, mp 84-86° [13C NMR resonances 
(C6D6,1H decoupled) at 21.4 ppm, C(3) (/PtC(3) = 96.1 Hz); 
30.9, C(I) (./ptc(i) = 608.8 Hz); and 136.2, C(2) (/PtC(2) = 
46.2 Hz); together with resonances due to coordinated t-
BuNC]. Thus, the reaction involves an oxidative 1,4-addition 
of a Pt(O) species to the 1,3-diene to form a platinacyclopent-
3-ene. Although this mode of metal-diene interaction has been 
observed previously with Ni(O) complexes6 and the perfluo-
rinated diene CF2:CFCF:CF2, this is the first example of such 
a reaction with a hydrocarbon.7 

It is likely that the reaction involves the intermediacy of 
(cycloocta - 1,5 - diene)(2,3-dimethylbuta-l,3-diene)-
platinum(O), which undergoes an electronic rearrangement 
to form the Pt(II) five-membered ring species. There has been 
considerable discussion about the possibility that bisolefin 
complexes could reversibly transform into a metallocyclo-
pentane.8 

In contrast, buta-1,3-diene reacts (room temperature, 2 h) 
with [Pt(l,5-C8Hi2)2] to form complex III, mp 110 0C. Ex­
amination of the 1H and 13C NMR spectra showed that III was 
a 2,5-divinylplatinacyclopentane; however, the important 
question as to the relative configuration of the vinyl groups 
remained undefined. A single-crystal x-ray diffraction study 
established the structure shown in Figure 1. Crystal data: 
Ci6H24Pt; monoclinic; P2\/n;Z = 4 in a unit cell of dimen­
sions a = 9.082 (6), b = 10.554 (13), c = 15.293 (4) A; /J = 
92.13 (7)°; J? is currently 0.12 for 1487 reflections with / > 
2.0(T (/) (Syntex Plx four-circle diffractometer using Mo Ka 
radiation). The crystal of III was twinned and the resulting 
structure showed disorder; therefore, further structural con­
firmation was sought. Cycloocta-1,5-diene was displaced from 
III by tert-buty\ isocyanide to give complex IV, mp 111-112°, 
whose crystal structure was also determined (Figure 2). Crystal 
data: CJgH30N2Pt; monoclinic; P2\/n; Z = 4 in a unit cell of 
dimensions, a = 9.317 (4), A= 12.284 (12), c = 19.217(15) 
A; /3 = 99.16(5)°; R is currently 0.10 for 1100 reflections with 
/ > 2.0<T(/). 

Despite the problems of crystal imperfection the structures 
of both III and IV showed unequivocally that the vinyl groups 
lie on opposite sides of the five-membered ring with deviations 
of 0.84 and -0.97 A in III and -0.64 and 0.71 A in IV, re­
spectively, from the mean coordination plane. An insight into 
the mode of formation of the trans-2,5-divinylplatinacyclo­
pentane ring system was obtained from a study of the reaction 
of bis(ethylene)trimethylphosphineplatinum with buta-1,3-
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Figure 1. A view of the molecular structure of one of the independent 
molecules of [Pt-CH(CH:CH2)CH2CH2CH(CH:CH2)(C8H12)] showing 
the atomic numbering scheme, and projected onto the mean plane of C1, 
C4, Pt, C5,6, and C9.10: Pt-C(olefin), 2.32 (6); Pt-C(a), 2.21 (5) A; 
/ClPtC4, 85°. 

Figure 2. A view of the molecular structure of one of the independent 
molecules of [ Pt-CH(CH :CH2)CH2CH2CH(CH:CH2)(<-BuNC)2] 
showing the atomic numbering scheme, and projected onto the mean plane 
of Cl, C4, Pt, CS, Cl: Pt-C(a), 2.07 (4); Pt-C(f-BuNC), 1.84 (4) A; 
zClPtC4, 82°. 

diene. Similar results were obtained with the analogous tri-
cyclohexylphosphine, triphenylphosphine, or triethylphosphine 
complexes. The white crystalline product V, mp 90-93° dec, 
showed a very similar 1H NMR spectrum to that reported9 for 
l-)7,-6,7,8-?;3-ci.r-2-//"art.s-6-octadienediyl(tricyclohexyl-
phosphine)nickel and the illustrated structure was further 
confirmed by a 13C NMR spectrum [C6D6, 1H decoupled: 4.4 
ppm C(I) ( JW(O = 640.4, 7pc(o = 4.9 Hz); 17.1, (PMe3); 
25.2, C(4) and C(S); 49.9, C(8) (JptC(S) = 55.7 Hz); 64.4, C(6) 
UptC(6) = 44.0, /pC(6) = 36.1 Hz); 108.7, C(7) (Jp1C(T) - 32.3, 
7PC(7) = 2.0 Hz); 112.6, C(3) (7Ptc(3) = 59.6 Hz); and 134.2, 
C(2) (JPica) = 78.1, 7pc(2) = 2.0 Hz)] and by a single-crystal 
x-ray diffraction study ( -60° ) . Crystal data: C, i H2iPPt; or-

Scheme I 

(V, L = PMe3) 

(VI, L = PMe3) I 

cis products 

thorhombic; Pnam; Z = 4 in a unit cell of dimensions a = 
15.979 (15), b = 9.017 (24), c = 8.992 (7) A; R is currently 
0.064 for 1291 reflections with / > 2.O0-(I); Pt-C(8) = 2.18 
(3), Pt-C(7) = 2.11 (3), Pt-C(6) = 2.15 (3), Pt-C(I) = 2.15 
(3), Pt-P = 2.229 (6) A. The structure showed disorder about 
a crystallographic mirror plane; the atoms C(7) and C( 1) oc­
cupying two sites with equal probability. 

Reaction (room temperature, 1 h) of V with 1 molar equiv 
of trimethylphosphine affords complex VI, mp 92-94° dec, the 
bis(trimethylphosphine) analogue of III and IV. In addition, 
treatment of III with 1 mol of trimethylphosphine yields V. The 
formation of III, IV, and VI with a trans-divinyl stereochem­
istry is somewhat unexpected in view of the suggestion1 that 
a c/s-divinylnickelacyclopentane is the precursor of cis-div-
inylcyclobutane in the Ni(O) catalyzed dimerization of buta-
1,3-diene. We believe that this suggestion is essentially correct, 
but that we must also take into account the different confor­
mations which the ir-allyl-Cg chain can adopt. This is illus­
trated in Scheme I.10 In the case of platinum the conformation 
leading to the trans-divinyl stereochemistry is preferred. 
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